Partly shared spinal cord networks for locomotion and scratching.
نویسندگان
چکیده
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.
منابع مشابه
Strong interactions between spinal cord networks for locomotion and scratching.
Distinct rhythmic behaviors involving a common set of motoneurons and muscles can be generated by separate central nervous system (CNS) networks, a single network, or partly overlapping networks in invertebrates. Less is known for vertebrates. Simultaneous activation of two networks can reveal overlap or interactions between them. The turtle spinal cord contains networks that generate locomotio...
متن کاملPhysiology and morphology of shared and specialized spinal interneurons for locomotion and scratching.
Distinct types of rhythmic movements that use the same muscles are typically generated largely by shared multifunctional neurons in invertebrates, but less is known for vertebrates. Evidence suggests that locomotion and scratching are produced partly by shared spinal cord interneuronal circuity, although direct evidence with intracellular recording has been lacking. Here, spinal interneurons we...
متن کاملShared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons
Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation ("dual stimulation") in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests th...
متن کاملRostral spinal cord segments are sufficient to generate a rhythm for both locomotion and scratching but affect their hip extensor phases differently.
Rostral segments of the spinal cord hindlimb enlargement are more important than caudal segments for generating locomotion and scratching rhythms in limbed vertebrates, but the adequacy of rostral segments has not been directly compared between locomotion and scratching. We separated caudal segments from immobilized low-spinal turtles by sequential spinal cord transections. After separation of ...
متن کاملEvidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.
Locomotion and scratch are characterized by alternation of flexion and extension phases within one hindlimb, which are mediated by rhythm-generating circuitry within the spinal cord. By definition, the rhythm generator controls cycle period, phase durations, and phase transitions. The aim was to determine whether rhythm-generating mechanisms for locomotion and scratch are similar in adult decer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Integrative and comparative biology
دوره 51 6 شماره
صفحات -
تاریخ انتشار 2011